Presynaptic mu-opioid receptors regulate a late step of the secretory process in rat ventral tegmental area GABAergic neurons.
نویسندگان
چکیده
Gamma-aminobutyric acid (GABA)-containing interneurons of the ventral tegmental area (VTA) regulate the activity of dopaminergic neurons. These GABAergic interneurons are known to be innervated by synaptic terminals containing enkephalin, an endogenous ligand of mu-opioid receptors. Bath application of mu-opioid receptor agonists inhibits the activity of VTA GABAergic neurons but the mechanism whereby mu-opioid receptors regulate synaptic GABA release from these neurons has not been directly identified. Using cultured VTA neurons we have confirmed that mu-opioid receptor agonists inhibit synaptic GABA release. DAMGO, a selective mu-opioid receptor agonist, had four distinct effects on GABAergic IPSCs: (1) it inhibited the frequency and amplitude of spontaneous IPSCs (sIPSCs), (2) it reduced the amplitude of IPSCs evoked by single action potentials, (3) it inhibited the frequency, but not the amplitude of miniature IPSCs (mIPSCs), and (4) DAMGO inhibited mIPSCs evoked by ionomycin, a Ca(2+) ionophore. The inhibition of action potential-evoked IPSCs and of spontaneous and ionomycin-evoked mIPSCs by DAMGO was prevented by the K(+) channel blocker, 4-aminopyridine (4-AP). In conclusion, our work shows that one of the mechanisms through which mu-opioid receptors inhibit GABA release by VTA neurons is through inhibition of the secretory process at the nerve terminal level. In addition, considering that ionomycin stimulates exocytosis through a mechanism that should be insensitive to membrane polarization, our experiments with 4-AP suggest that K(+) channels are implicated in the inhibition of the efficacy of the secretory process by mu-opioid receptors.
منابع مشابه
Opioid modulation of ventral pallidal afferents to ventral tegmental area neurons.
Activation of mu opioid receptors within the ventral tegmental area (VTA) can produce reward through the inhibition of GABAergic inputs. GABAergic neurons in the ventral pallidum (VP) provide a major input to VTA neurons. To determine the specific VTA neuronal targets of VP afferents and their sensitivity to mu opioid receptor agonists, we virally expressed channel rhodopsin (ChR2) in rat VP ne...
متن کاملVentral Tegmental Area Microinjected-SKF38393 Increases Regular Chow Intake in 18 Hours Food Deprived Rats
Ventral tegmental area (VTA) dopamine neurons play an important role in reward mechanisms of food intake, and VTA dopamine receptors exist on the terminal of glutamatergic and GABAergic neurons and regulate GABA and glutamate release. To our knowledge, there is no evidence to show that VTA D1 dopamine receptors play a role in regular chow intake. In this paper, the effect of SKF38393, a D1 rece...
متن کاملIdentification of Rat Ventral Tegmental Area GABAergic Neurons
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal ...
متن کاملEvaluation of GABA Receptors of Ventral Tegmental Area in Cardiovascular Responses in Rat
Background: The ventral tegmental area (VTA) is well known for its role in cardiovascular control. It is demonstrated that about 20-30% of the VTA neurons are GABAergic though their role in cardiovascular control is not yet understood. This study is carried out to find the effects of GABA A and GABA B receptors on cardiovascular response of the VTA. Methods: Experiments were performed on uretha...
متن کاملERK1/2 activation in rat ventral tegmental area by the mu-opioid agonist fentanyl: an in vitro study.
Opioid receptors in the ventral tegmental area, predominantly the mu-opioid receptors, have been suggested to modulate reinforcement sensitivity for both opioid and non-opioid drugs of abuse. The present study was conducted to study signal transduction proteins, which may mediate the functioning of mu-opioid receptors in the neurons of the ventral tegmental area. Therefore, brain slices of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropharmacology
دوره 42 8 شماره
صفحات -
تاریخ انتشار 2002